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Abstract 
 

A multivariable analysis is the most popular approach when investigating associations between risk factors and 

disease. However, efficiency of multivariable analysis highly depends on correlation structure among predictive 

variables.  When the covariates in the model are not independent one another, collinearity/multicollinearity 

problems arise in the analysis, which leads to biased estimation.  This work aims to perform a simulation study 

with various scenarios of different collinearity structures to investigate the effects of collinearity under various 

correlation structures amongst predictive and explanatory variables and to compare these results with existing 

guidelines to decide harmful collinearity. Three correlation scenarios among predictor variables are considered: 

(1) bivariate collinear structure as the most simple collinearity case, (2) multivariate collinear structure where an 

explanatory variable is correlated with two other covariates, (3) a more realistic scenario when an independent 

variable can be expressed by various functions including the other variables.  
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Introduction 
 

Multivariable analysis is a commonly used statistical method in medical research when multiple predictive 

variables are considered to estimate the association with study measurements. However, efficiency of 

multivariable analysis highly depends on correlation structure among predictive variables since inference for 

multivariable analysis assumes that all predictive variables are uncorrelated. When the covariates in   the model 

are not independent from one another, collinearity or multicollinearity problems arise in the analysis, which leads 

to biased coefficient estimation and a loss of power. Numerous studies in epidemiology, genomics, medicine, 

marketing and management, and basic sciences have reported the effects and diagnosis of collinearity amongst 

their study variables (Batterham et al. 1997; Wax 1992; Cavell et al. 1998; Mofenson et al. 1999; Elmstahl et al. 

1997; Parkin et al. 2002; Kmita et al. 2002).As literature indicates, collinearity increases the estimate of standard 

error of regression coefficients, causing wider confidence intervals and increasing the chance to reject the 

significant test statistic. This leads to imprecise estimates of regression coefficients with wrong signs and an 

implausible magnitude for some regressors because the effects of these variables are all mixed together. 

Furthermore, it reveals that small change in the data may lead to large differences in regression coefficients, and 

causes a loss in power and makes interpretation more difficult since there is a lot of common variation in the 

variables (Vasu and Elmore 1975; Belsley 1976; Stewart 1987; Dohoo et al., 1996; Tu et al., 2005).  
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How can we assess whether or not collinearity is truly harmful or problematic in the estimation of multivariable 

models? The literature provides numerous suggestions including the examination of the correlation matrix of the 

independent variables, computing the coefficients of determination,   
  of each    regressed on the remaining 

predictor variables including the variance inflation factor (VIF), and measuring condition index (CI) based on the 

singular value decomposition of the data matrix X. This work aims to investigate the effects of collinearity under 

various correlation structures amongst predictive and explanatory variables, to compare these results with existing 

guidelines to decide harmful collinearity, and to provide a guideline on multivariable modeling. Following a brief 

review for effects of collinearity and diagnostic tools, we describe how to generate correlated data, and develop a 

simulation study with various scenarios of different collinearity structures. We then demonstrate the proper 

examination of the effects of those different collinearity situations and compare them. Three correlation scenarios 

among predictor variables are considered: (1) bivariate collinear structure as the most simple collinearity case: 

only two correlated variables among independent variables, (2) multivariate collinear structure where an 

explanatory  variable is correlated with two other covariates, (3) a more realistic scenario when an independent 

variable can be expressed by various functions including the other variables.   
 
 

Effects of Collinearity and Diagnostic Tools 
 

Collinearity or multicollinearity causes redundant information, which means that what a regressor explains about 

the response is overlapped by what another regressor or a set of other regressors explain. Hair et al. (1998) noted 

that as multicollinearity increases, it is more difficult to ascertain the effect of any single variable produce biased 

estimates of coefficients for regressors because the variables have more interrelationships. The effect of 

collinearity can be investigated with the formula for the variance-covariance matrix of the estimated coefficients.  
 

The variance-covariance matrix for the vector of coefficients, β, are given by 
 

                                                                   (1) 
 

where X is the design matrix and σ² is the error variance, which is estimated by the sample variance s². Next we 

define 
2

kR  as the coefficient of determination for a regression with    as the dependent variable and the other 

  
  ,    , as predictor variables. The variance of a specific coefficient    is given by  

 
 

                        
      

                                  (2) 
  

where     is the kth entry in   ;     is the entry in the ith row, kth column of X;      is the mean of the kth column 

(Fox et al. 1992). If the multicollinearity between a kth independent variable    and one or more other 

independent variables increases,    becomes larger since it demonstrates the linear relationship between    and 

other variables. The equation (2) indicates that a larger     increases the variance of the estimate of the kth 

regression coefficient,    . The estimated standard deviation of least square estimated regression coefficients, 

s(   ), will increase as the  degree of multicollinearity becomes higher. Therefore, larger values of s(   ) will also 

affect the value of a t-test. The test statistic,     / s(   ), becomes smaller when the value of s(   ) is larger. The 

confidence interval for the regression coefficients,     ± t  s(   ), becomes larger as the  estimated standard 

deviation becomes larger. As a consequence, collinearity causes increased inaccuracy, and can seriously distort 

the interpretation of a model. Serious distortion yields elevated risk of both false-positive results (Type I error) 

and false-negative results (Type II error). Note that if multicollinearity is not perfect, the ordinary least square 

estimate, βˆ, is unbiased, still best linear unbiased estimates (BLUE), and will have the least variance among 

unbiased linear estimators while its variance will increase due to multicollinearity.  
 

The literature provides numerous suggestions, ranging from simple rules of thumb to complex indices, for 

diagnosing the presence of substantive collinearity. The variance important factors (VIF) is one of the most 

widely used rules. The VIF for the predictor variable    is given by 1 / ( 1 -   
 ). VIF indicate the strength of the 

linear dependencies and how much the variances of each regression coefficients is inflated due to collinearity 

compared to when the independent variables are not linearly related. Despite no formal rule, it is generally 

accepted that a VIF value greater than 10 may be harmful. As mostly known, we expect that as the degree of 

collinearity goes seriously, both the variance of the estimate of the kth regressor coefficient and the VIF become 

larger.  
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Effects of Collinearity under various Collinear Conditions 
 

A simulation study is performed to examine the effects of bias due to the degree of collinearity amongst 

independent variables in multivariable linear regression models. Let X be a matrix of three independent variables: 

  ,   , and   ; and, let Σ be a variance-covariance matrix of a vector X. Our purpose is to generate the vector X 

from multivariate normal distribution with mean zero vector and variance-covariance matrix Σ, where Σ is a 

symmetric 3 by 3 matrix and a positive definite. We can obtain correlated normal variables X = C ′ Z where Z are 

standard normal random variables and C is an upper triangular matrix such that C ′ C = Σ for any positive definite 

matrix Σ. Three different scenarios are considered, which have different correlation structures among the 

variables. First, we begin with the simplest case which assumes that two variables are correlated with each other 

among three predictive variables in a multivariable model, but the remaining independent variable does not 

correlate with both the two correlated independent variables. In this bivariate collinearity scenario, we investigate 

the effect of bias in estimates of related regressor coefficients due to the variation in the degree of collinearity 

between the two variables in the model. Second, we extend the first scenario by correcting a variable with two 

other variables, but maintain that there is no correlation between those two variables. Thus, there exist two 

correlation coefficients in this case. Third, we consider an independent variable which can be obtained by a 

mathematical function of the other predictive variables in the model. Four different transformation functions 

which are frequently found in medical research are used to investigate the effect of bias in regressor’s estimates 

where indirect correlation exists between a calculated variable and the other covariates. They include: (1) ratio of 

two variables, (2) interaction of two variables, (3) linear combination of two variables, and (4) quadratic form of a 

variable.  

 
 

Case 1: Two Variables Aare Correlated with Each Other 
 

This scenario assumes that two (   and   ) are correlated with each other and another covariate (X2) is 

independent with both    and   . We denote r13 as the correlation coefficient between    and   , and considered 

escalated levels of correlation between two variables X1 and X3. We increase the r13 from zero to one by 

increments of 0.05 positively, then decrease from zero to minus one by 0.05 negatively.  We then investigated the 

degree to which the estimates for 1 , 2 , and 3  are seriously affected in the bias magnitude according to 

different levels of correlation. Our main interest in this scenario is to examine the effect of distortion in estimates 

of two correlated parameter coefficients, β1 and β3. Table 1 shows the point estimates of three regression, 1 , 

2 , and 3  for covariates   ,   , and    due to the variation of degrees in the correlation coefficients “r13” 

between zero and plus/minus one. As expected, the estimate of the regression coefficient for a variable     is 

almost unchanged regardless of the variation of the correlation coefficient between    and    but the estimates of 

the regressor coefficients for variables of    and    vary over the different level of correlation coefficient, r13. 

Both estimates of β1 and β3 have very similar variation of effects in magnitude for both positive and negative 

correlation structures. The estimates vary smoothly until the correlation reach to 90% positively or to 90% 

negatively, but vary quite sharply after 90% of positive correlation and 90% of negative correlation. The estimate 

of β1 is 1.2275 when it is uncorrelated, but show a bias almost twice as great at r13=0.70 (β1 = 2.4780), and 

increases dramatically when r13 is greater than 0.90. The estimates are 3.8603, 5.1064, and 29.7068 when 

r13=0.90, 0.95 and 0.99 respectively. The estimate of β3 is similarly biased to the estimate of β1. It also showed a 

dramatic increase dramatically when r13 is greater than 0.90, and reaches 28.50675 at r13=1.0. Therefore, we see 

the estimates of β1 and β3 are biased similarly for both covariates. Figure 1 shows the trajectories of the variation 

of the estimates of three coefficients, β1, β2 and β3, when the correlation coefficient between    and    varies 

from zero to one and minus one by a difference of 5%.  

 

The 95% confidence intervals for those three coefficients were examined to see how much they were affected by 

the degree of collinearity. Table 2 shows the width between the lower and upper interval estimates for all three 

regression coefficients at each level of the correlation coefficient between    and   . Note that the width of the 

interval estimates for 2  does not change regardless of the variation of the r13 since the variable X2 is not 

correlated with both    and   . However, the distance for 1  and 3  increase dramatically as the r13 approaches 

to one or to minus one.  
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The interval differences for both coefficients of 1  and 3  are 1.41 and 1.39 at r13=0 respectively, but the values 

become more than 20 times larger when they are nearly perfectly positively or negatively correlated (30. 72 for β1 

and 31.18 for β3). We also examined variance inflation factors (VIF) for this multivariable model including three 

explanatory variables. As expected, the VIF of    against    and    and of    against    and     varied 

according to the degree of correlation between    and   . The results also showed that the VIF of    against    

and     did not vary because     is uncorrelated with    and   . It’s interesting to note that the VIFs do not vary 

much until the correlation between    and    reached over 90%. This result was consistent with the variation of 

estimates.   
 

 

Case 2: A Variable Correlated With More Than Two Variables 
 

This scenario depicts that a variable,   , is assumed to be correlated with both    and   , but no correlation exists 

between    and   . Let r1 be the correlation coefficient between    and   2, and similarly r2 be the correlation 

coefficient between    and   . Like scenario 1, the correlation coefficients of r1 and r2 vary from 0 to 1 

positively and from 0 to -1 negatively, respectively. Then, we investigated how much the estimates of three 

parameters were biased from the baseline condition of no correlation coefficient (r1=r2=0) as the correlation 

structures of r1 and r2 increased by 5%. Since X1 was correlated with both    and   , it was of our primary 

interest to examine how much the estimate of    was biased compared as the baseline estimate at no correlation 

condition (r1=r2=0). Table 3 provides a summary of how the estimates of 1 , 2 , and 3  vary according to 

different conditions of two correlation coefficients between r1 and r2. There are two possible correlation 

combinations: (a) the condition that both r1 and r2 show same signs (positive or negative) and (b) the condition 

that r1 and r2 have different signs. A closer look at these conditions follows:  
 

 

(1) Both r1 and r2 are positive or negative 
 

The unbiased estimates of the coefficients are seriously overestimated to -78.3486, 64.2119 and 62.8196 

respectively ((i) when both positive) and up to 80.9281, 64.2119, and 62.8196 respectively ((ii) when 

both negative), from 1.2897, 0.8432, and 0.7693. It is of interest to note that the estimate of    became 

underestimated to -1.1266 which    and    did not demonstrate on underestimation pattern. When (ii) is 

compared with condition (i), the maximum magnitudes in overestimation for all three coefficients were 

very similar, however there was not an underestimation, as seen in condition (i).  It is of great interest 

that the most and least biased values in condition (i) for 2  and 3  are the same as those in condition (ii) 

for 2  and 3 . The only difference between the two correlation combinations is that the correlation sign 

differ from one another.   
 
 

(2) r1 is positive and r2 is negative (i) or the reverse (ii) 
 

When r1 is positive and r2 is negative, the estimate of 1  has the most (-7.3261) and least (3.4548) biased value, 

demonstrating lower collinearity effect when compared to the conditions of (a) and (b). Similarly the estimates of 

2  and 3  are overestimated up to -5.4416 and 8.5068, and show the least biased estimation for 2  and 3  with 

0.7253 and 0.7794 respectively. The biased effects between 2  and 3  have a symmetrical relation over the no 

correlation origin. It is highly interesting to observe that the estimate variation of the two coefficients    and    

are exactly the same as those in condition (ii). The only difference between condition (i) and (ii) appears to be an 

opposite correlation sign from one another as defined above.  
 

 

Interestingly, the collinearity effects for the estimates of the three coefficients occur more seriously when both r1 

and r2 are positive or negative rather than when either r1 or r2 is positive and the other is negative. It might be 

that positive and negative effects for the variable    counteract collinearity effects. Figure 2 shows variation 

shapes of bias in estimation for the three coefficients   ,   , and    when both r1 and r2 vary from -1 to 1.  
 

Case 3: The 3
rd

 Variable (  ) Is A Function Of Other Two Variables (   and   ) 
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This is a case that incorporates the variable into the model which is functioned by the other existing 

variables in the model. In medical and health science research, new variables are often created to 

provide better prediction or diagnosis of specific outcomes. These are usually expressed by a function 

which includes observational measurements. For example, body mass index (BMI), which is calculated 

by a function of height and weight (BMI = kg / m²) has mostly been used to guide studies of obesity. 

Multivariable analysis can be performed to investigate the association between BMI and obese status, 

which includes several covariates and BMI. What happens when one performs a multivariable analysis 

that includes weight and height as well as BMI in the analysis model? To answer this question we 

investigated how much the multivariable analysis (including those three variables of   ,   , and   ) 

coincidently affected inference on their parameters. The following mathematical functions were used: 
 

         
  : A third variable is created using the ratio between two variables. The new variable    is 

proportional to the variable   , but proportional to the inverse of   
 .  

         : This is very common in the multivariable model as interaction terms are considered into 

the model when we have more than two variables which might be doubtable for interaction effects.  

           : This case shows any linear combination including the existing independent variables. 

The linear combinations can be seen easily in lots of multiplication transformation for imputed or 

calculated medical indices in various medical researches.  

      
  : A quadratic term is incorporated into a multivariable model since a covariate and its quadratic 

term are both incorporated in the model.    

 

This scenario assumes that two covariates    and    are not correlated, and a transformed variable    is 

correlated with both    and   . Table 4 is the correlation matrix of (1) between    and   , (2) between    and 

  , and (3) between    and   .  The column of C(  , f) represents the correlation structure between    and a 

function including    and   , which increases from zero to 100 by 5% incraments. Each actual correlation matrix 

includes four types of functions. Since the variables of    and    were not correlated, it is understandable to 

observe correlation coefficients between    and    indicate values almost equivalent to zero regardless of what 

type of functions are included. However, the correlation between    and    becomes increasingly correlated for 

all four types of functions when the correlation between functions and X3 are gradually increased. Similarly, the 

correlation between    and     increases as the correlation between     and functions of    and    increase for 

only functions of (a) and (b). We also examined the estimates of coefficients of three variables over the 

correlation structure due to how the functions correlate with    as seen in Table 5. The magnitudes in bias of the 

estimates of regression coefficients are approximately proportional to how much    is correlated with the 

functions – mathematical transformations of    and   . The estimate of the regression coefficient of    shows 

almost constant regardless of the increase of correlation between    and the functions while the estimates for    

and    are affected by the correlation structure. The estimate of coefficient of    appears mostly biased for all 

four types of functions. When a transformed variable is added into a model with two related variables, the 

estimate of a variable of    is seriously overestimated, as many as 20 times, compared to the estimate when 

uncorrelated. Conversely, the estimate of a variable    can show an underestimation of up to 50 times. As well 

known, the interaction variable affects the estimates of both two main effects and the interaction term itself, as 

does the quadratic term. The linear combination of existing variables may be less biased when compared to other 

functions. Figure 3 shows the trajectories of estimates of regression coefficients of   ,   , and    with four 

different types of functions over the increase of correlation between X3 and their functions. For the estimate of 

the coefficient of   , the functions of (b), (c), and (d) inflate estimation while the function of (a) decreases the 

estimation. The estimation of coefficient of   , however, entirely different. The function (a) only inflates the 

estimation while the other functions decrease the estimation.  
 

 

Discussion    
 

A multivariable analysis is the most popular approach when investigating associations between risk factors and 

disease. Regardless of the type of dependent outcomes or data measured in a model for each subject, multivariable 

analysis considers more than two risk factors in the analysis model as covariates. Cox proportional hazards 

models, multiple linear regression, logistic regression, and mixed effect models are commonly used multivariable 

models in medical research.  
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In the first example of this work, we considered a collinearity between two covariates. The commonly used 

cutoffs to diagnose the presence of one or more strong bivariate correlations are 0.7 through 0.9, but there is even 

a 0.35 as strong linear association, which is consistent with the result of the first example. If multivariate 

correlations exist among covariates, a rule of thumb should be applied differently from scenario 1. When a 

variable with two correlation coefficients exist with other variables, the coefficients of 0.8 and 0.6 overestimate 

the regression coefficients of the three related variables by almost 70 times (if those two correlation coefficients 

show the same signals). However, if two correlation coefficients are different signals from one another, the 

overestimation is reduced up to 10 times. For these reasons, it is necessary to concentrate multicollinearity effects 

if correlation coefficients show the same signs in a correlation matrix.  Binary outcome variables are also 

considered to investigate multicollinearity in all three scenarios. The results are very consistent to that of the 

continuous outcome variable.    
 

Conflict of Interest Statement: None declared. 
 

 

Acknowledgement 
 

This research has been supported by 8U54MD007588 (NIH/NIMHD),  2U54CA118638-06 (NCI), 

U54MD008149 (NINHD/NIH), and UL1TR000454 (NIH/NCATS) 
 

References 
 

Batterham AM, Tolfrey K, George KP. (1997). Nevill’s explanation of Kleiber’s 0.75 mass exponent: an artifact of 

collinearity problems in least squares models? Journal of Applied Physiology, 82, 693-697.  

Belsley DA. (1976). Multicollinearity: Diagnosing its presence and assessing the potential damage it causes least square 

estimation. NBER Working Paper, No. W0154. 

CarnesBA, Slade NA. (1988). The Use of Regression for Detecting Competition with Multicollinear Data. Ecology, 69(4), 

1266-1274. 

Cavell AC, Lydiate DJ, Parkin IAP. (1998). Collinearity between a 30-centimorgan segment of Arabidopsis thaliana 

chromosome 4 and duplicated regions within the Brassica napus genome. Genome, 41, 62-69.  

CohenJ, CohenP, WestSG. (2003). Applied multiple regression/correlation analysis for behavioral sciences. (3rded.) 

Hillsdale, NJ: Lawrence Erlbaum.  

Dohoo IR, Ducrot C, Fourichon C. (1996). An overview of techniques for dealing with large numbers of independent 

variables in epidemiologic studies. Preventive Veterinary Medicine, 29, 221-239.  

ElmstahlS, Gullberg B. (1997). Bias in Diet Assessment Methods-Consequences of Collinearity and Measurement Errors on 

Power and Observed Relative Risks. International Journal of Epidemiology, 26(5), 1071-1079.  

Feldstein MS.(1973). Multicollinearity and the Mean Square Error of Alternative Estimators.Econometrica, 41(2), 337-346. 

Fox J, Monette G. (1992). Generalized Collinearity Diagnostics. Journal of the American Statistical Association, 87(417), 

178-183. 

Haas CN. (1999). On Modeling Correlated Random variables in Risk Assessment. Risk Analysis, 19(6), 1205-1214.  

Hair JF, Tatham RL, Anderson RE.(1998). Multivariate Data Analysis.(5thed.). Prentice Hall. 

Hurst RL, Knop RE.(1972). Algorithm 425: generation of random correlated normal variables [G5]. Communications of the 

ACM, 15(5), 355 – 357. 

Katz MH. (2003). Multivariate Analysis: A primer for readers of medical research. Ann Intern Med, 138, 644-650.   

Kleinbaum DG,Kupper LL, Muller KE, Nizam A. (1998). Applied Regression Analysis and Other Multivariable Methods. 

(3rd ed.).Duxbury. 

Kmita M, Fraudeau N, Herault Y. (2002). Serial deletions and duplications suggest a mechanism for the collinearity of Hoxd 

genes in limbs. Nature, 420, 145-150.  

Lunn AD, Davies SJ. (1998). A note on generating correlated binary variables.Biometrika, 85(2), 487-490. 

Mason CH, Perreault WD Jr. (1991). Collinearity, Power, and Interpretation of Multiple Regression Analysis. Journal of 

Marketing Research, 28(3), 268-280. 

Mela CF, Kopalle PK. (2002). The impact of collinearity on regression analysis: the asymmetric effect of negative and 

positive correlations. Applied Ecomonics, 34, 667-677. 

Mofenson LM, Lambert JS, Stiehm RE. (1999). Risk factors for perinatal transmission of human immunodeficiency virus 

type I in women treated with Zidovudine. The New England Journal of Medicine, 341(6), 385-393.  

Park CG, Park T, Shin DW. (1996). A simple method for generating correlated binary variates. The American Statistician, 

50(4), 306-310. 

Parkin IAP, Lydiate DJ, Trick M. (2002). Assessing the level of collinearity between Arabidopsis thaliana and Brassica 

napus for A. thaliana chromosome 5. Genome, 45, 356-366.  

 



International Journal of Applied Science and Technology                                              Vol. 4, No. 5; October 2014 

15 

 

Rawlings JO, Pantula SG, Dickey DA. (1998). Applied Regression Analysis: Research Tool.  (2nded.). New York, NY: 

Springer-Verlag New York, Inc. 

Shacham M, Brauner N. (1997). Minimizing the effects of collinearity in polynomial regression. Ind. Eng. Chem. Res, 36, 

4405-4412.  

Slinker BK, Stanton AG. (1985). Multiple regression for physiological data analysis: the problem of multicollinearity. 

American Journal of Physiology, 249, 1-12.  

Stewart GW. (1987). Collinearity and Least Square Regression. Statistical Science, 2(1), 68-94.  

Stine RA. (1995). Graphical Interpretation of Variance Inflation Factors. The American Statistician, 49(1), 53-56. 

 

Tu YK, Kellett M, Clerehugh V. (2005).Problems of correlations between explanatory variables in multiple regression 

analyses in the dental literature. British Dental Journal, 199(7), 457-461.  

Vasilopoulos A. (1983). Generating correlated random variables for quality control applications. Annual Simulation 

Symposium: Proceedings of the 16th annual symposium on Simulation, pp. 105-119. 

Vasu ES, Elmore PB.(1975). The Effect of Multicollinearity and the Violation of the Assumption of Normality on the 

Testing of Hypotheses in Regression Analysis.Presented at the Annual Meeting of the American Educational 

Research Association, Washington, D.C., March 30-April 3. 

Vellman PF, Welsch RE. (1981). Efficient Computing of Regression Diagnostics. The American Statistician, 35(4), 234-242. 

Wax Y. (1992). Collinearity diagnosis for a relative risk regression analysis: An application to assessment of diet-cancer 

relationship in epidemiological studies. Statistics in Medicine, 11(10), 1273-1287. 

Yoo W, Ference BA, Cote ML, Schawartz AG. A comparison of logistic regression, classification tree, Random Forest and 

logic regression to detecting SNP interaction. International Journal of Applied Science and Technology, 2012;2(7):268-284.  

 
 

Table 1: Point Estimation of Regressorcoefficients for X1, X2, and X3 from Correlated Data Sets Which 

Had Been Randomly Generated According to Different Correlation Condition between X1 and X3 
 

True  

correlation 

coefficient  

between X1 

and X3 

Parameter estimates of True  

correlation  

coefficient  

between X1 

and X3 

Parameter estimates of 

X1 X2 X3 X1 X2 X3 

0.00 

-0.05 

-0.10 

-0.15 

-0.20 

-0.25 

-0.30 

-0.35 

-0.40 

-0.45 

-0.50 

-0.55 

-0.60 

-0.65 

-0.70 

-0.75 

-0.80 

-0.85 

-0.90 

-0.95 

-1.00 

1.22746 

1.29254 

1.35683 

1.42210 

1.48890 

1.55782 

1.62955 

1.70494 

1.78498 

1.87097 

1.96458 

2.06808 

2.18463 

2.31889 

2.47803 

2.67392 

2.92811 

3.28528 

3.86032 

5.10642 

29.70680 

0.86001 

0.86001 

0.86001 

0.86001 

0.86001 

0.86001 

0.86001 

0.86001 

0.86001 

0.86001 

0.86001 

0.86001 

0.86001 

0.86001 

0.86001 

0.86001 

0.86001 

0.86001 

0.86001 

0.86001 

0.86001 

1.27453 

1.27613 

1.28095 

1.28912 

1.30082 

1.31633 

1.33607 

1.36059 

1.39063 

1.42720 

1.47171 

1.52609 

1.59317 

1.67716 

1.78470 

1.92691 

2.12422 

2.41947 

2.92398 

4.08178 

28.50657 

0.00 

0.05 

0.10 

0.15 

0.20 

0.25 

0.30 

0.35 

0.40 

0.45 

0.50 

0.55 

0.60 

0.65 

0.70 

0.75 

0.80 

0.85 

0.90 

0.95 

1.00 

1.22746 

1.16493 

1.10064 

1.03536 

0.96857 

0.89965 

0.82791 

0.75252 

0.67248 

0.58649 

0.49288 

0.38938 

0.27283 

0.13858 

-0.02056 

-0.21645 

-0.47065 

-0.82782 

-1.40285 

-2.64895 

-27.24934 

0.86001 

0.86001 

0.86001 

0.86001 

0.86001 

0.86001 

0.86001 

0.86001 

0.86001 

0.86001 

0.86001 

0.86001 

0.86001 

0.86001 

0.86001 

0.86001 

0.86001 

0.86001 

0.86001 

0.86001 

0.86001 

1.27453 

1.27613 

1.28095 

1.28912 

1.30082 

1.31633 

1.33607 

1.36059 

1.39063 

1.42720 

1.47171 

1.52609 

1.59317 

1.67716 

1.78470 

1.92691 

2.12422 

2.41947 

2.92398 

4.08178 

28.50657 
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Table 2: Distance between Lower and Upper Confidence Intervals for Three Coefficients for X1, X2, And 

X3 from Correlated Data Sets Which Had Been Randomly Generated According to Different Correlation 

Condition between X1 and X3 
 

True  

correlation 

coefficient  

between 

X1 and 

X3 

Width of confidence interval for True  

correlation 

coefficient  

between X1 

and X3 

Width of confidence interval for 

X1 X2 X3 X1 X2 X3 

0.00 

-0.05 

-0.10 

-0.15 

-0.20 

-0.25 

-0.30 

-0.35 

-0.40 

-0.45 

-0.50 

-0.55 

-0.60 

-0.65 

-0.70 

-0.75 

-0.80 

-0.85 

-0.90 

-0.95 

-1.00 

1.406819 

1.385228 

1.367213 

1.352427 

1.341073 

1.333464 

1.330049 

1.331448 

1.338510 

1.352391 

1.374683 

1.407616 

1.454398 

1.519800 

1.611279 

1.741262 

1.932431 

2.232095 

2.762723 

4.011370 

30.723340 

0.543092 

0.543092 

0.543092 

0.543092 

0.543092 

0.543092 

0.543092 

0.543092 

0.543092 

0.543092 

0.543092 

0.543092 

0.543092 

0.543092 

0.543092 

0.543092 

0.543092 

0.543092 

0.543092 

0.543092 

0.543092 

1.394216 

1.395961 

1.401239 

1.410170 

1.422965 

1.439939 

1.461534 

1.488354 

1.521213 

1.561221 

1.609901 

1.669389 

1.742769 

1.834652 

1.952291 

2.107855 

2.323692 

2.646660 

3.198548 

4.465061 

31.18339 

0.00 

0.05 

0.10 

0.15 

0.20 

0.25 

0.30 

0.35 

0.40 

0.45 

0.50 

0.55 

0.60 

0.65 

0.70 

0.75 

0.80 

0.85 

0.90 

0.95 

1.00 

1.406819 

1.430601 

1.458000 

1.488707 

1.522960 

1.561106 

1.603618 

1.651135 

1.704511 

1.764897 

1.833864 

1.913601 

2.007256 

2.119516 

2.257728 

2.434188 

2.671421 

3.016562 

3.591886 

4.884249 

31.637910 

0.543092 

0.543092 

0.543092 

0.543092 

0.543092 

0.543092 

0.543092 

0.543092 

0.543092 

0.543092 

0.543092 

0.543092 

0.543092 

0.543092 

0.543092 

0.543092 

0.543092 

0.543092 

0.543092 

0.543092 

0.543092 

1.394216 

1.395961 

1.401239 

1.410170 

1.422965 

1.439939 

1.461534 

1.488354 

1.521213 

1.561221 

1.609901 

1.669389 

1.742769 

1.834652 

1.952291 

2.107855 

2.323692 

2.646660 

3.198548 

4.465061 

31.18339 
 

 

Table 3: The Estimates of Three Regressor Coefficients According To Different Combinations of 

Correlation Coefficients of Both between X1 and X2 (R1), and between X1 and X3 (R2) 
 

Condition of  

r1=c(X1,X2) and 

r2=c(X1,X3) 

Estimates 

Beta 1 Beta 2 Beta 3 

r1 = r2 = 0 β1 = 1.2897 β2 = 0.8432 β3 = 0.7693 

r1 = 0 only (-1.0509, 3.6304) 

for 95% to -95% 

(0.8432, 2.6998) 

for 0% to -95/95% 

0.7693 

for -95% to 95% 

r2 = 0 only (-1.2751, 3.8545) 

for 95% to -95% 

0.8432 

For -95% to 95% 

(0.7693, 2.4639) 

for 0% to -95/95% 

r1 > 0 and r2 > 0 -78.3486 (r1=.6,r2=.8) 

-1.1266 (r1=.95, r2=.05) 

64.2119 (r1=.6, r2=.8) 

0.9658 (r1=.95,r2=.05) 

62.8196 (r1=.8,r2=.6) 

0.7794 (r1=.05,r2=.95) 

r1 < 0 and r2 < 0 80.9281 (r1=-.6,r2=-.8) 

3.7060 (r1=-.95, r2=-.05) 

64.2119 (r1=-.6,r2=-.8) 

0.9658 (r1=-.95,r2=-.05) 

62.8196 (r1=-.8,r2=-.6) 

0.7794 (r1=-.05,r2=-.95) 

r1 > 0 and r2 < 0 -7.3261 (r1=.95,r2=.3) 

3.4548 (r1=.05,r2=-.95) 

-5.4416 (r1=.3,r2=-.95) 

0.7253 (r1=.95,r2=-.05) 

8.5068 (r1=.95,r2=-.3) 

0.7794 (r1=-.05,r2=.95) 

r1 < 0 and r2 > 0 9.9055 (r1=-95,r2=.3) 

-0.8753 (r1=-.05,r2=.95) 

-5.4416 (r1=-.3,r2=.95) 

0.7253 (r1=-.95,r2=.05) 

8.5068 (r1=-.95,r2=.3) 

0.7794 (r1=.05,r2=-.95) 
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Table 4: Correlation Matrix of (1) between X1 and X2 (2) between X1 and X3 (3) between X2 And X3 

When There Exists a Variable Which is a Function (X3) With the Other Existing Variables (X1, X2) in the 

Model for Four Different Types of Functions: (A) X3=X1/X2² (B) X3=X1*X2 (C) X3=4X1-2X2 (D) X3=X1² 
 

C(X3,f) Correlation between X1 and X2 Correlation between X1 and X3 Correlation between X2 and X3 

(a) (b) (c) (d) (a) (b) (c) (d) (a) (b) (c) (d) 

0 

5 

10 
15 

20 
25 

30 

35 
40 

45 

50 
55 

60 

65 

70 

75 

80 
85 

90 

95 
100 

0.00298 

0.00298 

0.00298 
0.00298 

0.00298 
0.00298 

0.00298 

0.00298 
0.00298 

0.00298 

0.00298 
0.00298 

0.00298 

0.00298 

0.00298 

0.00298 

0.00298 
0.00298 

0.00298 

0.00298 
0.00298 

0.00298 

0.00298 

0.00298 
0.00298 

0.00298 
0.00298 

0.00298 

0.00298 
0.00298 

0.00298 

0.00298 
0.00298 

0.00298 

0.00298 

0.00298 

0.00298 

0.00298 
0.00298 

0.00298 

0.00298 
0.00298 

0.00298 

0.00298 

0.00298 
0.00298 

0.00298 
0.00298 

0.00298 

0.00298 
0.00298 

0.00298 

0.00298 
0.00298 

0.00298 

0.00298 

0.00298 

0.00298 

0.00298 
0.00298 

0.00298 

0.00298 
0.00298 

0.00298 

0.00298 

0.00298 
0.00298 

0.00298 
0.00298 

0.00298 

0.00298 
0.00298 

0.00298 

0.00298 
0.00298 

0.00298 

0.00298 

0.00298 

0.00298 

0.00298 
0.00298 

0.00298 

0.00298 
0.00298 

0.04838 

0.10041 

0.13713 
0.18680 

0.22893 
0.28204 

0.33202 

0.36635 
0.41138 

0.45069 

0.49258 
0.55166 

0.58312 

0.63668 

0.69642 

0.72258 

0.75317 
0.77045 

0.80706 

0.84845 
0.89893 

0.04838 

0.02568 

0.09854 
0.13719 

0.14437 
0.19879 

0.22662 

0.24315 
0.27141 

0.29883 

0.32092 
0.35817 

0.38418 

0.43400 

0.48033 

0.52656 

0.55475 
0.59802 

0.67557 

0.78042 
0.97239 

0.04838 

0.00790 

0.08746 
0.12691 

0.13189 
0.18380 

0.20797 

0.22261 
0.24869 

0.27535 

0.29426 
0.32937 

0.35817 

0.40221 

0.44730 

0.49347 

0.51985 
0.56452 

0.64710 

0.76070 
1.00000 

0.04838 

0.03041 

0.12535 
0.17676 

0.19493 
0.25629 

0.28975 

0.31478 
0.34865 

0.38416 

0.41159 
0.45609 

0.48928 

0.54679 

0.59893 

0.64839 

0.68024 
0.72407 

0.79101 

0.86611 
0.98362 

-0.0013 

-0.0202 

-0.0522 
-0.0919 

-0.1305 
-0.1475 

-0.1604 

-0.1857 
-0.1989 

-0.2150 

-0.2221 
-0.2437 

-0.2603 

-0.2807 

-0.3273 

-0.3465 

-0.3559 
-0.3749 

-0.3939 

-0.4168 
-0.4176 

-0.00132 

-0.02371 

 0.00339 
-0.00492 

 0.01085 
 0.02895 

 0.04778 

 0.05223 
 0.04868 

 0.04617 

 0.06741 
 0.07456 

 0.06910 

 0.08554 

 0.09827 

 0.10630 

 0.11748 
 0.12476 

 0.14762 

 0.20241 
 0.22761 

-0.00132 

-0.03987 

-0.01866 
-0.03416 

-0.02313 
-0.01118 

 0.00088 

-0.00051 
-0.00888 

-0.01548 

 0.00045 
 0.00313 

-0.01135 

-0.00403 

 0.00006 

-0.00075 

-0.00231 
-0.01120 

-0.00441 

 0.02104 
 0.00085 

-0.00132 

-0.03698 

-0.02411 
-0.04453 

-0.03325 
-0.01950 

-0.00538 

-0.00487 
-0.01168 

-0.01802 

-0.00126 
-0.00003 

-0.01554 

-0.00735 

-0.00425 

-0.00426 

-0.00242 
-0.00729 

-0.00320 

 0.02027 
 0.01070 

 

“f” stands for function of X1 and X2 to predict X3.  
 

 

 

Table 5: Point Estimates of Three Regressor Coefficients When There Exists a Variable Which is a 

Function (X3) with the Other Existing Variables (X1, X2) in the Model for Four Different Types af 

Functions: (A) X3=Y*(1+X1) (B) X3=√Y/X1 (C) X3=X1²/√Y (D) X3=Y*(4X1-2X2) 
 

C(X3,f) beta 1 beta 2 beta 3 

(a) (b) (c) (d) (a) (b) (c) (d) (a) (b) (c) (d) 

0 

5 

10 
15 

20 

25 
30 

35 

40 
45 

50 

55 
60 

65 

70 
75 

80 

85 
90 

95 

100 

 0.0741 

 0.0660 

 0.0580 
 0.0529 

 0.0413 

 0.0339 
 0.0315 

 0.0238 

 0.0189 
 0.0069 

-0.0109 

-0.0457 
-0.0597 

-0.0806 

-0.1470 
-0.1802 

-0.2633 

-0.2971 
-0.3506 

-0.4991 

-0.7804 

0.0741 

0.0783 

0.0812 
0.0869 

0.0893 

0.0890 
0.0947 

0.0978 

0.0989 
0.1025 

0.1102 

0.1159 
0.1252 

0.1296 

0.1291 
0.1425 

0.1310 

0.1506 
0.1739 

0.2748 

1.6045 

0.0741 

0.0790 

0.0822 
0.0871 

0.0890 

0.0878 
0.0920 

0.0941 

0.0943 
0.0970 

0.1027 

0.1058 
0.1128 

0.1137 

0.1097 
0.1188 

0.1024 

0.1114 
0.1123 

0.1571 

0.0000 

0.0741 

0.0802 

0.0827 
0.0880 

0.0916 

0.0932 
0.1007 

0.1052 

0.1053 
0.1086 

0.1173 

0.1222 
0.1357 

0.1417 

0.1379 
0.1552 

0.1340 

0.1603 
0.1856 

0.3009 

1.2067 

 90.9491 

 91.1538 

 90.6475 
 91.4620 

 91.2598 

 91.5242 
 92.2891 

 92.3117 

 92.7162 
 92.7640 

 92.6265 

 92.8765 
 93.2148 

 93.6883 

 94.2336 
 94.7596 

 95.1261 

 95.7494 
 96.6863 

 97.8389 

100.7381 

 90.9491 

 96.1672 

 96.0582 
 95.9728 

 96.2790 

 96.4771 
 96.3857 

 96.5550 

 96.4131 
 96.1969 

 96.2069 

 96.0295 
 96.2266 

 96.3104 

 96.1240 
 96.0263 

 96.1116 

 96.1925 
 96.5406 

 96.8979 

100.8335 

 90.9491 

 96.5858 

 96.3016 
 96.0907 

 96.2107 

 96.3687 
 96.2279 

 96.3461 

 96.2535 
 96.0476 

 95.9946 

 95.8641 
 95.9862 

 96.0772 

 95.9616 
 95.8224 

 95.9654 

 95.9414 
 96.2119 

 96.0896 

 96.4607 

 90.9491 

 96.5904 

 96.3670 
 95.1252 

 96.0906 

 96.1231 
 95.8647 

 95.8296 

 95.7744 
 95.5906 

 95.3579 

 95.1415 
 94.8755 

 94.7647 

 94.8047 
 94.3187 

 94.9703 

 94.3048 
 93.8528 

 91.0809 

 68.5637 

 0.3154 

 0.3268 

 0.3746 
 0.3446 

 0.3903 

 0.3953 
 0.3626 

 0.3823 

 0.3745 
 0.4080 

 0.4635 

 0.5465 
 0.5680 

 0.6015 

 0.7624 
 0.8286 

 1.0424 

 1.1044 
 1.2056 

 1.5614 

 2.1943 

  0.3154 

  0.0242 

  0.0187 
  0.0092 

 -0.0051 

 -0.0100 
 -0.0143 

 -0.0206 

 -0.0172 
 -0.0149 

 -0.0218 

 -0.0227 
 -0.0326 

 -0.0361 

 -0.0309 
 -0.0377 

 -0.0290 

 -0.0421 
 -0.0596 

 -0.1233 

 -0.9530 

  0.3154 

  0.0018 

  0.0046 
  0.0029 

 -0.0015 

 -0.0029 
 -0.0036 

 -0.0058 

 -0.0043 
 -0.0031 

 -0.0050 

 -0.0050 
 -0.0083 

 -0.0088 

 -0.0060 
 -0.0077 

 -0.0031 

 -0.0055 
 -0.0069 

 -0.0177 

 -0.0208 

  0.3154 

 -0.0002 

  0.0002 
  0.0001 

 -0.0001 

 -0.0002 
 -0.0002 

 -0.0003 

 -0.0002 
 -0.0002 

 -0.0003 

 -0.0003 
 -0.0004 

 -0.0004 

 -0.0003 
 -0.0004 

 -0.0003 

 -0.0004 
 -0.0006 

 -0.0013 

 -0.0063 
 

“f” stands for function of X1 and X3 to predict X3.  
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Figure 1. The trajectories of the variation of the estimates of three coefficients, β1, β2 and β3, when the 

correlation coefficient between X1 and X3 varies from zero to one and minus one by a difference of 5%. X-

axis is escalated levels of correlation between two variables X1 and X3 and Y-axis is estimates of three 

coefficients, β1, β2 and β3. The estimate β1 increases as the correlation coefficient varies from zero to 

minus one but decreases as the correlation coefficient varies from zero to one goes while the estimate β3 

increases as the correlation coefficient varies from zero to one or minus one. The estimate β2 is almost 

constant regardless of the variation of the correlation coefficientbetween X1 and X3. (Red line for β1, blue 

line for β2, and black line for β3). 

 

 

 
                                     (a)  1                                                              (b) 2  

 

(c) 3  
 

Figure 2. Variation shapes of bias in estimation for the three coefficients X1, X2 and X3 when both r1 and 

r2 vary from -1 to 1. The figures show how the estimates of 1 , 2 , and 3  vary according to different 

conditions of two correlation coefficients between the correlation coefficient between X1 and X2  (r1) and 

the correlation coefficient between X1 and X3 (r2): (a) for 1 , (b) for 2 , and (c) for 3 . The X-axis 

represents r1, Y-axis is r2, and Z-axis is the regression coefficient.  
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(a)  1                                                              (b) 2

 
 

 

   (c) 3  
 

Figure 3. The trajectories of estimates of regression coefficients of X1, X2 and X3with four different types 

of functions over the increase of correlation between X3 and their functions. The X-axis stands for the 

correlation coefficient between X3 and their four types of functions and the Y-axis is the regression 

coefficients of three variables. Each figure includes trajectories of the estimates of three regression 

coefficients correlated with the X3 and four types of function. (Red line for “X3 = X1 / X2²”, blue for 

“X1*X2, black for “4X1-2X2”, and green for “X1²).  


